ミレニアム懸賞問題

2000年5月24日に、パリで開かれたアメリカのクレイ数学研究所の年会で発浮ウれた100万ドルの懸賞金がかけられている7つの数学上の未解決問題のこと。ミレニアム賞問題、ミレニアム問題ともいわれる。
解けたと思う者は、まず数学の専門誌に発浮オ、2年たって反論が出なかった場合に顧問委員会が設置される。そこで詳しく調べられ、間違いなしと判定されると懸賞金が獲得できる。
7つの問題とは、計算複雑性理論(計算量理論)におけるクラスPとクラスNPが等しくないというP≠P卵z(P is not NP)。また、複素数体上の非特異射影代数多様体について、任意のホッジ類は、代数的サイクルの類の有理数係数の線形結合であるというホッジ卵zやポアンカレ卵z。ドイツの数学者ベルンハルト・リーマンのゼータ関数の零点の分布に関するリーマン卵z。さらに、ヤン・ミルズ理論とmass gap、ナヴィエ・ストークス方程式の解の存在と滑らかさ、バーチ・スウィナートン・ダイアーの卵zがある。
ただし、単連結な3次元閉多様体は3次元球面S3に同相であるというポアンカレ卵zについては、ロシア人数学者グリゴリー・ペレルマンによって2002年に証明されたという検証が進んでいる。

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人

コメント

コメントする

目次